
Natural
Language
Processing
Yue Zhang
Westlake University

Chapter 13

Neural Networks

2

3

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

4

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

Multi-layer perceptron

5

• From a single layer to multiple layers

• MLP model can learn non-linear mappings between the input �⃗� and

the output 𝑜

Single-layer perceptron

6

Generalized linear model in Chapter 4

• Input layer: x - receives input data and represents

them using vectors

• Output unit: 𝑦 - makes predictions according to the

features extracted from the input layer.

• Mapping function: 𝑦 = 𝑓(�⃗� ⋅ �⃗�)

• Task: text classification (𝑦 = +1/−1)

Multi-outputs

7

• Tasks:

𝑦! = 𝑓(𝜃! ⋅ �⃗�) sentiment

positive/negative

𝑦" = 𝑓(𝜃" ⋅ �⃗�) document class

sports/politics/⋯

…

𝑦# = 𝑓(𝜃# ⋅ �⃗�) …

Two-layers

8

• Input layer: x - receives input data and

represents them using vectors

• Hidden layers: �⃗� - induces useful non-linear

features from the input vectors

• Output layer: 𝑜 - makes predictions

according to the features extracted from the

hidden layers.

• Task: 𝑜 is liked by John

Three-layers

9

• Input layer: x - receives input data and

represents them using vectors

• Hidden layers: �⃗�, 𝑧 - induces useful non-

linear features from the input vectors

• Output layer: 𝑜 - makes predictions

according to the features extracted from

the hidden layers.

Activation function

10

• Non-linear activation functions

11

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

Neural network notation

12

Matrix-vector notation

• Concatenation of column vectors

𝐖$ = �⃗�!; �⃗�"; . . . ; �⃗�%
&
,

• Single layer perceptron

𝐲 = 𝑓(𝐖$𝐱)，

Matrix Vector Notation

13

• Multi-layer perceptron, we use h to denote hidden layers as:

𝐡! = 𝑓(𝐖$𝐱)
𝐡" = 𝑔(𝐖'𝐡!)

𝑜 = ℎ(𝐯&𝐡")

Matrix Vector Notation

14

• Multi-class classifier:

〉𝑜 = 〈𝑜!, 𝑜", ⋯ , 𝑜%
𝐖(= 𝑣!; 𝑣"; ⋯ ; 𝑣% &

• As a result,

𝑜 = 𝐖(𝐡

• Applying softmax function:

)𝐩 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐨

Correlation with linear classifier

15

• For binary classification, MLP differs from linear perceptron only in

the use of hidden layers.

• For multi-class classification

• Single layer perceptron extends feature vector (Chapter 3)

• Multi-layer perceptron extends output layer 𝑊((Chapter 13)

• Duplicating the input feature vector 𝑚 times equals the duplication of

the model parameter vector 𝑚 times.

Correlation with linear classifier

16

𝑠𝑐𝑜𝑟𝑒 𝑐! = �⃗� ⋅ 𝜙(𝑥, 𝑐!)

𝑠𝑐𝑜𝑟𝑒 𝑐" = �⃗� ⋅ 𝜙(𝑥, 𝑐")

…

𝑠𝑐𝑜𝑟𝑒 𝑐% = �⃗� ⋅ 𝜙(𝑥, 𝑐%)

𝑠𝑐𝑜𝑟𝑒 𝑐! = 𝜃! ⋅ 𝜙(𝑥)

𝑠𝑐𝑜𝑟𝑒 𝑐" = 𝜃" ⋅ 𝜙(𝑥)

…

𝑠𝑐𝑜𝑟𝑒 𝑐% = 𝜃% ⋅ 𝜙(𝑥)

• Where 𝜙(𝑥) denotes the input feature representation without

combining the class label, and 𝜃# denotes the corresponding weight

vector for 𝜙 𝑥, 𝑐# , 𝑖 ∈ [1, … ,𝑚].

Correlation with linear classifier

17

As a result, no matter for binary or multi-class classification, MLP

differs from linear perceptron only in the use of hidden layers.

…… …

…

…

𝒙 𝒐

c!

c"

c%

𝒙 𝒐

c!

c"

c%

𝒉

Single-layer perceptron for

multiclass classification
Multi-layer perceptron for

multiclass classification

Characteristics of neural hidden layers and
their representation power

18

• Low dimensional

• Dense, with nodes in real numbers

• Dynamically calculated

The effect of hidden layer representation

19

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

Training multi-layer perceptrons

20

The principles of training the generalized perceptron model can be

applied for the training of multi-layer perceptrons.

• Training set: 𝐷 = {(𝑥#, 𝑐#)}|#)!*

• Input feature vector: 𝐱#
• Gold-standard output label: 𝑐#
• Model target 𝑃(𝑐|𝐱)

• Parameterization: MLP

• Log-likelihood loss with 𝐿" regularization:

𝐿 = −log𝑃(𝐷) + 𝜆||𝛩||" = −∑#)!* log 𝑃(𝑐#|𝐱#) + 𝜆||𝛩||"

Training multi-layer perceptrons
using SGD

21

The principle of SGD

• Given a training set 𝐷

• The algorithm goes through all the training instances for multiple iterations

• For each training instance, calculate the gradient of a local loss with respect

to each model parameter

• Update the model parameters with their respective gradients, possibly with

a learning rate factor.

Training a neural network

22

• Key issue: feed gradient for every

model parameter

• Take a simple network for example.

𝒚 = 𝑾$𝒙 "

𝒐 = 𝜎(𝒖𝒚)

𝑾𝒚 =
𝑊!!

$ 𝑊!"
$

𝑊!!
$ 𝑊!"

$ 𝒖 =
𝑢!
𝑢"

23

Now calculate gradients

Computation graph for a neural
network

24

25

Given a training instance 𝐱! , 𝑐! , the loss is

𝐿 𝐱! , 𝑐! , 𝛩 = −log𝑃 𝑐!|𝐱! + 𝜆‖𝛩‖"

=− log𝜎 𝑢#𝑦# + 𝑢"𝑦" + 𝜆‖𝛩‖"

= −log𝜎 𝑢! 𝑤!!
$ 𝑥! +𝑤!"

$ 𝑥"
" + 𝑢" 𝑤"!

$ 𝑥! +𝑤""
$ 𝑥"

"

+𝜆 𝑤!!
$ " + 𝑤!"

$ " + 𝑤"!
$ " + 𝑤""

$ " + 𝑢! " + 𝑢" "

Loss function

26

The local gradients are

!" 𝐱!,%!,&
!'"

= !()*+,
!'"

+ !‖&‖#

!'"

= −
𝜕 𝑢!𝑦! + 𝑢"𝑦" − log 1 + exp 𝑢!𝑦! + 𝑢"𝑦"

𝜕𝑢!
+ 2𝜆𝑢!

= − 𝑦# −
$%& '!(!)'"("

#)$%& '!(!)'"("
𝑦# + 2𝜆𝑢#

= −(1 − 𝑜)𝑦. + 2𝜆𝑢.

)+,(𝐱#,0#,1
+'"

= −(1 − 𝑜) ⋅ 𝑦" + 2𝜆𝑢"

Gradients

27

Gradients

)-.(𝐱!,2!,3
-4""

= −(1 − 𝑜) ⋅ (𝑢! ⋅ 2(𝑤!!
$ 𝑥! +𝑤!"

$ 𝑥") ⋅ 𝑥!) + 2𝜆𝑤!!
$

)-.(𝐱!,2!,3
-4""

= −(1 − 𝑜) ⋅ (𝑢! ⋅ 2(𝑤!!
$ 𝑥! +𝑤!"

$ 𝑥") ⋅ 𝑥!) + 2𝜆𝑤!!
$

= −2(1 − 𝑜)(𝑢!(𝑤!!
$ 𝑥! +𝑤!"

$ 𝑥") ⋅ 𝑥!) + 2𝜆𝑤!!
$

)-.(𝐱!,2!,3
-4"$

= −2(1 − 𝑜)(𝑢!(𝑤!!
$ 𝑥! +𝑤!"

$ 𝑥") ⋅ 𝑥") + 2𝜆𝑤!"
$

)-.(𝐱!,2!,3
-4$"

= −2(1 − 𝑜)(𝑢"(𝑤"!
$ 𝑥! +𝑤""

$ 𝑥") ⋅ 𝑥!) + 2𝜆𝑤"!
$

)-.(𝐱!,2!,3
-4$$

= −2(1 − 𝑜)(𝑢"(𝑤"!
$ 𝑥! +𝑤""

$ 𝑥") ⋅ 𝑥") + 2𝜆𝑤""
$

28

In	matrix	vector	notation

-. 𝐱!,2!,3
-𝐮 = -. 𝐱!,2!,3

-6"
, -. 𝐱!,2!,3-6$

= −(1 − 𝑜)𝑦! + 2𝜆𝑢!, −(1 − 𝑜)𝑦" + 2𝜆𝑢"
= −(1 − 𝑜)𝐲 + 2𝜆𝐮

-. 𝐱!,2!,3
-𝐖# =

-. 𝐱!,2!,3
-4""

, -. 𝐱!,2!,3
-4"$

#

-. 𝐱!,2!,3
-4$"

, -. 𝐱!,2!,3
-4$$

#

Matrix-vector notation of gradients

= −2 1 − 𝑜 𝒖⊗ 𝑾$𝒙 𝒙&

29

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

30

Now calculate gradients

Computation graph for a neural
network

31

• The above process is tedious for large neural nets

• Solution: perform modularized and incremental gradient calculation

• Back-propagation allows modularization of neural network components in

deep networks

• the forward computation

• the back-propagation rule

• the partial derivative of the loss with respect to the model parameters

• the partial derivative of the loss with respect to the input layer

Back-propagation

32

• For each layer

• the structure – input to output

• the input -- gradient on output nodes

• the computation

• the partial derivative with respect to the model parameters

• the partial derivative with respect to the input nodes

Back-propagation

33

34

Back-propagation

For the MLP
𝐲 = 𝐖$𝐱 ", 𝑜 = 𝜎 𝐮& ⋅ 𝐲

For SGD, the local loss is
𝐿(𝐱, 𝑐, 𝛩) = 𝐿(+ ‖𝛩‖"

For the layer 𝐲 → 𝑜, input is -.
%

-(
𝜕𝐿(

𝜕𝐮 =
𝜕𝐿(

𝜕𝑜 ⋅ 𝑜(1 − 𝑜)𝐲
𝜕𝐿(

𝜕𝐲
=
𝜕𝐿(

𝜕𝑜
⋅ 𝑜(1 − 𝑜)𝐮

For the layer 𝐱 → 𝐲, input is -.
%

-𝐲
𝜕𝐿(

𝜕𝐖$ =
𝜕𝐿(

𝜕𝐲
⊗ 2𝐖$𝐱 ⋅ 𝐱&

35

Back-propagation for calculating
gradients for arbitrary network

36

Parameter Initialization

Randomly initialize the parameters with different values

Given a model parameter 𝐖 at the first layer, initialization of

each element in 𝐖 include

1. Xavier Uniform Initialization.𝐖~𝒰 − !
"!#"!"#

, !
"!#"!"#

2. Xavier Normal Initialization.𝐖~𝒩 0, $
"!#"!"#

3. Kaiming Uniform Initialization.𝐖~𝒰 − !
"!"#

, !
"!"#

4. Kaiming Normal Initialization.𝐖~𝒩 0, $
"!"#

37

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

38

Neural Text Classification Structure

• Neural hidden layers are dense low-dimensional vectors

• Input still discrete sparse high-dimensional

…
…

…

…

…
…

…

39

Neural Text Classification Structure

Represent each word in the sentence also using

a dense low-dimensional vector, called word

embedding.

Use a sequence encoding network to extract

hidden features automatically.

40

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

41

Embedding layer
• Dense embeddings offer a better semantic similarity measure correspond with sparse

vectors (Chapter 5)

• One-hot column vector, distributional vector, PMI vector: 𝐱 ∈ ℝ|:|

• Word embedding matrix (embedding lookup table): 𝐖 ∈ ℝ;×|:|

• The embedding vector of 𝑥 can be defined by

𝑒𝑚𝑏(𝑥) = 𝐖𝐱

• For neural network, 𝑒𝑚𝑏 𝑥 can be low-dimensional (500-2000)

• Pre-training

Word embedding values can be separately trained over large raw texts before model

training.

42

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

43

Sequence encoder

A subnetwork that transforms a sequence of dense vectors

into a single dense vector that represents features over the

whole sequence.

• Pooling

• Convolutional network

• Recurrent neural network

• Attentional neural network

44

Pooling

Pooling based sequence representation (deep averaging network)

• Sum pooling

sum 𝐗!:> = ∑#)!> 𝐱#
• Average pooling

avg 𝐗!:> = !
>
∑#)!> 𝐱#

• Max pooling

max 𝐗!:> =]max#)!> 𝐱#[1],max#)!> 𝐱#[2], … ,max#)!> 𝐱#[𝑑 &

• Min pooling

min 𝐗!:> =]min#)!𝐱#[1],min#)!𝐱#[2], … ,min#)!𝐱#[𝑑 &

45

Pooling
• Back-propagation

• For sum pooling, -.
-𝐱!

= -.
-𝐡

for all)𝐱#(𝑖 ∈ [1, … , 𝑛]

• For average pooling, -.-𝐱! =
!
>
-.
-𝐡

• For maximum pooling, %&
]%𝐱$[*

= A
!"
!𝐡
[𝑗] Eif 𝑖 = argmax $%!∈[(,…,+ 𝐱%![𝑗], (𝑖 ∈ [1, … , 𝑛], 𝑗 ∈ [1, … , 𝑑]
0 otherwise

• Pooling can work with a variable-sized set of input vectors,

aggregating them into a fix-sized output.

46

Convolutional neural network (CNN)

• Pooling extract 𝑢𝑛𝑖gram-level features

• No model parameters

• No 𝑛-gram features with 𝑛 > 1.

47

Convolutional neural network (CNN)

Use convolutional filters to extract n-gram features

• Window-size 𝐾 filters

• Input: 𝐗!:> = 𝐱!, 𝐱", 𝐱R, ⋯ , 𝐱>
• Output: 𝐇!:% = 𝐡!, 𝐡", ⋯ , 𝐡%
• Input channel and output channel dimensions: 𝑑S, 𝑑T

𝐇!:>UVW! = CNN 𝐗!:>, 𝐾, 𝑑T
𝐡X = 𝐖𝐗X:#WVU! + 𝐛

48

Convolutional neural network (CNN)

Back-propagation

-.
-𝐖 =�

#)!

>UVW! -.
-𝐡!

𝐱#⊕𝐱#W!⊕⋯⊕𝐱#WVU! &

𝜕𝐿
𝜕𝐛

= \

%,(

+-./(

𝜕𝐿
𝜕𝐡%

-.
-𝐱!
(𝑖 ∈ 1,… , 𝑛)

49

Comparison with discrete n-gram features

CNN features are different from Chapter3 feature vectors

• Dense and low-dimensional

• Dynamically computed

• Adjustable during training

50

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

51

Neural Text Classififcation Structure

Represent each word in the sentence

also using a dense low-dimensional

vector, called word embedding.

Find a single hidden vector for the

sequence.

52

Output layer

Output classes: 𝐶 = 𝑐!, … , 𝑐|]|

• Input vector: a sequence of vectors 𝐗!:>
• CNN calculates a sequence of vectors 𝐇!:>UVW!
• Pooling gives a dense and more abstract vector representation 𝐡

• Softmax multi-class output layer calculates the classification

probability distribution:

𝐨 = 𝐖(𝐡 + 𝐛(

)𝐩 = softmax(𝐨

53

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

54

Training under the SGD framework

• With log-likelihood loss (cross-entropy loss)

• Training samples: 𝐗#, 𝑐# |#)!*

• Cross-entropy loss: 𝐿 = −∑#)!* log 𝐩 𝑐#
• Back-backpropagation, SGD

• Compared to max margin loss, cross-entropy loss gives more fine-

grained supervision signal.

55

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

56

Neural network models are difficult
to train

• Train arbitrary hyper-surface shapes in a high-dimensional vector space

• Gradient diminishing -- Back-propagated gradients can become negligibly

small through layers

• Gradient explosion – Back-propagated gradients become infinitely large

causing numerical overflow

• Tendency of overfitting

57

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

58

Avoid Gradient Explosion

• Gradient clipping

Prevent gradient being too large by consulting hard

threshold values

59

Residual network

• Add a direct connection between the input layer and the output layer

• Input vector: 𝒙

• Baseline network: g(𝒙 (nonlinear transformation))

• Residual network = $RESIDUAL(x, 𝑔 :𝐡 = 𝑔(𝐱) + 𝐱

• Given a local loss 𝐿 and back-propagated gradients !"
!𝐡

Calculate !"
!𝒙

as !"
!𝐱
[𝑔] + !"

!𝐡
preventing failure of training

• Residual networks are effective for training very deep neural networks

60

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

61

Layer Normalization
• Internal covariate shift

Slightly changing one parameter of a layer can greatly affect the

distribution of the node values in the subsequent layers

• Layer normalization

Calculates the mean and variance statistics over 𝐳 for defining a mapping

function 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚:ℝ; → ℝ;)𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐳; 𝛂, 𝛃 is given by (𝛂: gains, 𝛃:

biases)

𝜇 = !
;
∑#)!; 𝐳 [𝑖] 𝜎 = !

;�#)!
; 𝐳[𝑖] − 𝜇

LayerNorm (𝐳; 𝛂, 𝛃) = 𝐳U_
` ⊗𝛂+ 𝛃

62

Dropout
• A training setting for neural networks to prevent overfitting

Randomly set the values of nodes or node connections to zeroes with a

probability

• Given a vector 𝐱 ∈ ℝ$ and a dropout probability 𝑝,)DROPOUT(𝐱, 𝑝 is

defined as

𝐦~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) (sample from Bernoulli distribution)

C𝐦 = 𝐦
&'(

DROPOUT(𝐱, 𝑝) = 𝐱⊗𝐦

Dropout mask: 𝐦

Scaled mask: C𝐦

63

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

64

SGD training

• The general updating rules of the time step 𝑡 for SGD are

𝐠a =
-. 3&'"
-3&'"

𝛩a = 𝛩aU! − 𝜂𝐠a
Model parameter: 𝛩 Loss function: 𝐿(𝛩)

• For training neural networks,

• 𝑔a can be calculated on a mini-batch of training examples

• The number of training iterations (epoch) can be selected according

to development experiments. (Early stopping)

• Adjust the learning rate 𝜂 at different time steps

• Learning rate decay

• step decay

• exponential decay

• gradient clipping

Prevent gradient being too large by consulting hard threshold values

• SGD with Momentum

A way to soften oscillations, accelerating the converging process

65

Several techniques for improving
SGD training

66

SGD with momentum

• The parameter update considers not only the immediate gradient but

also the history gradients

• The update rules for momentum SGD is

𝐠a =
-. 3&'"
-3&'"

𝐯a = 𝛾𝐯aU! + 𝜂𝐠a
𝛩a = 𝛩aU! − 𝐯a

• Memory vector (velocity vector): 𝐯a
• Momentum hyper-parameter (friction parameter): 𝛾

67

Contents
• 13.1 From One Layer to Multiple Layers

• 13.1.1 Multi-Layer Perceptron for Text Classification

• 13.1.2 Training a Multi-Layer Perceptron

• 13.2 Building a Text Classifier without Manual Features

• 13.2.1 Word Embeddings

• 13.2.2 Sequence Encoding Layers

• 13.2.3 Output layer

• 13.2.4 Training

• 13.3 Improve Neural Network Training

• 13.3.1 Avoiding Gradient Issues

• 13.3.2 Better Generalization

• 13.3.3 Improving SGD Training for Neural Networks

• 13.3.4 Hyper-Parameter Search

Hyper-Parameter Search

68

• Grid search

• Specify a set of candidate values for each hyperparameter

• Build a model for every combination of the specified

hyperparameters and evaluate the performance of each model

• Random search

• Random combinations of hyperparameters

Summary

69

• Multi-layer perceptrons and deep neural networks

• Convolutional neural networks for text classification

• Dropout, layer normalizations and residual network

• SGD with momentum

